Genome scale patterns of supercoiling in a bacterial chromosome
نویسندگان
چکیده
DNA in bacterial cells primarily exists in a negatively supercoiled state. The extent of supercoiling differs between regions of the chromosome, changes in response to external conditions and regulates gene expression. Here we report the use of trimethylpsoralen intercalation to map the extent of supercoiling across the Escherichia coli chromosome during exponential and stationary growth phases. We find that stationary phase E. coli cells display a gradient of negative supercoiling, with the terminus being more negatively supercoiled than the origin of replication, and that such a gradient is absent in exponentially growing cells. This stationary phase pattern is correlated with the binding of the nucleoid-associated protein HU, and we show that it is lost in an HU deletion strain. We suggest that HU establishes higher supercoiling near the terminus of the chromosome during stationary phase, whereas during exponential growth DNA gyrase and/or transcription equalizes supercoiling across the chromosome.
منابع مشابه
Transcription-coupled DNA supercoiling dictates the chromosomal arrangement of bacterial genes
Over the recent decade, the central importance of DNA supercoiling in chromosome organization and global gene regulation of bacteria became more and more visible. With a regulon comprising more than 2000 genes in Escherichia coli, DNA supercoiling is among the most influential regulators of gene expression found in bacteria so far. However, the mechanism creating thousands of diverse temporal g...
متن کاملThe Transcriptome of Streptococcus pneumoniae Induced by Local and Global Changes in Supercoiling
The bacterial chromosome is compacted in a manner optimal for DNA transactions to occur. The degree of compaction results from the level of DNA-supercoiling and the presence of nucleoid-binding proteins. DNA-supercoiling is homeostatically maintained by the opposing activities of relaxing DNA topoisomerases and negative supercoil-inducing DNA gyrase. DNA-supercoiling acts as a general cis regul...
متن کاملLarge-Scale Conformational Transitions in Supercoiled DNA Revealed by Coarse-Grained Simulation.
Topological constraints, such as those associated with DNA supercoiling, play an integral role in genomic regulation and organization in living systems. However, physical understanding of the principles that underlie DNA organization at biologically relevant length scales remains a formidable challenge. We develop a coarse-grained simulation approach for predicting equilibrium conformations of ...
متن کاملRates of Gyrase Supercoiling and Transcription Elongation Control Supercoil Density in a Bacterial Chromosome
Gyrase catalyzes negative supercoiling of DNA in an ATP-dependent reaction that helps condense bacterial chromosomes into a compact interwound "nucleoid." The supercoil density (σ) of prokaryotic DNA occurs in two forms. Diffusible supercoil density (σ(D)) moves freely around the chromosome in 10 kb domains, and constrained supercoil density (σ(C)) results from binding abundant proteins that be...
متن کاملLong-Range Periodic Patterns in Microbial Genomes Indicate Significant Multi-Scale Chromosomal Organization
Genome organization can be studied through analysis of chromosome position-dependent patterns in sequence-derived parameters. A comprehensive analysis of such patterns in prokaryotic sequences and genome-scale functional data has yet to be performed. We detected spatial patterns in sequence-derived parameters for 163 chromosomes occurring in 135 bacterial and 16 archaeal organisms using wavelet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016